Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t Keywords: Saliency Low-rank and sparse analysis Shape feature Structure This paper advocates a novel multi-scale mesh saliency method using the powerful low-rank and sparse analysis in shape feature space. The technical core of our approach is a new shape descriptor that embraces both local geometry information and global structure information in an integrated way. Our shape descriptor is organized in a layered and nested structure, enabling both multi-scale and multi-level functionalities. Upon devising our novel shape descriptor, the remaining challenge is to accurately capture sub-region (or sub-part) saliency from 3D geometric models. Towards this goal, we exploit our novel shape descriptor to define local-to-global shape context in a vertex-wise fashion and concatenate all the shape contexts to form a feature space, which encodes both local geometry feature and global structure feature. It then paves the way for us to employ the powerful low-rank and sparse analysis in the feature space, because the low-rank components emphasize much more on stronger patch/part similarities, and the sparse components correspond to their differences. By focusing on the sparse components, we develop a versatile, structure-sensitive saliency detection framework, which can distinguish local geometry saliency and global structure saliency in various 3D geometric models. Our extensive experiments have exhibited many attractive properties of our novel shape descriptor, including: being suitable for perception-driven analysis, being structure-sensitive, multi-scale, discriminative, and effectively capturing the intrinsic characteristic of the underlying geometry.
منابع مشابه
Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملMesh saliency with global rarity
Reliable estimation of visual saliency is helpful to guide many computer graphics tasks including shape matching, simplification, segmentation, etc. Inspired by basic principles induced by psychophysics studies, we propose a novel approach for computing saliency for 3D mesh surface considering both local contrast and global rarity. First, a multi-scale local shape descriptor is introduced to ca...
متن کاملSaliency Analysis via Hyperparameter Sparse Representation and Energy Distribution Optimization for Remote Sensing Images
In an effort to detect the region-of-interest (ROI) of remote sensing images with complex data distributions, sparse representation based on dictionary learning has been utilized, and has proved able to process high dimensional data adaptively and efficiently. In this paper, a visual attention model uniting hyperparameter sparse representation with energy distribution optimization is proposed f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Aided Geometric Design
دوره 35-36 شماره
صفحات -
تاریخ انتشار 2015